Products of CW complexes

Andrew Brooke-Taylor
UNIVERSITY OF LEEDS

Supported by EPSRC fellowship EP/K035703/2
Bringing set theory and algebraic topology together

CW complexes

For algebraic topology, even spheres are hard.

CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.

CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For $n \in \mathbb{N}$, let

- D^{n} denote the closed ball of radius 1 about the origin in \mathbb{R}^{n} (the n-disc),
- $\stackrel{\circ}{D}^{n}$ its interior (the open ball of radius 1 about the origin), and
- S^{n-1} its boundary (the $n-1$-sphere).

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}^{n}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha}^{n} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}^{n}\left[D^{n}\right]$ ("cells").

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}^{n}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha}^{n} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}^{n}\left[D^{\circ}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}^{n}, \varphi_{\alpha}^{n}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}^{n}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha}^{n} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}^{n}\left[D^{n}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}^{n}, \varphi_{\alpha}^{n}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.
(3) Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}^{n}\left[D^{n}\right]$ is closed.

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}^{n}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha}^{n} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}^{n}\left[D^{n}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}^{n}, \varphi_{\alpha}^{n}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.
(3) Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}^{n}\left[D^{n}\right]$ is closed.
We often denote $\varphi_{\alpha}^{n}\left[D^{n}\right]$ by e_{α}^{n}.

Not necessarily metrizable

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
X is not metrizable, as x_{0} does not have a countable neighbourhood base.

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
X is not metrizable, as x_{0} does not have a countable neighbourhood base.
Proof
Identify each edge with the unit interval, with x_{0} at 0 . Then for every $f: \mathbb{N} \rightarrow \mathbb{N}$, consider the open neighbourhood $U\left(x_{0} ; f\right)$ of x_{0} whose intersection with $e_{X, n}^{1}$ is the interval $[0,1 /(f(n)+1))$.

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
X is not metrizable, as x_{0} does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_{0} at 0 . Then for every $f: \mathbb{N} \rightarrow \mathbb{N}$, consider the open neighbourhood $U\left(x_{0} ; f\right)$ of x_{0} whose intersection with $e_{X, n}^{1}$ is the interval $[0,1 /(f(n)+1))$.

These form a neighbourhood base, but for any countably many f_{i}, there is a g that eventually dominates each of them, so $U\left(x_{0} ; g\right)$ does not contain any of the $U\left(x_{0} ; f_{i}\right)$.

Trouble in paradise

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention

In this talk, $X \times Y$ is always taken to have the product topology, so " $X \times Y$ is a CW complex" means "the product topology on $X \times Y$ is the same as the weak topology".

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $[0,1 / g(n)) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $[0,1 / g(n)) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be such that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $[0,1 / g(n)) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be such that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.
Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $e_{\alpha}^{n}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $e_{\alpha}^{n}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e}_{\alpha}^{n}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $e_{\alpha}^{n}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $e_{\alpha}^{n}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition

Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write locally finite for locally less than \aleph_{0}, and locally countable for locally less than \aleph_{1}.

Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.
\Leftarrow is trivial. For \Rightarrow, given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way.

What was known

Suppose X and Y are CW complexes.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on $[X$ or Y] is necessary."
Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."
Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.
Theorem (Y. Tanaka, 1982)
If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)
Assuming CH, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)
Assuming CH, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)
Assuming $\mathfrak{b}=\aleph_{1}, X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka's work)
No.

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)
Yes!

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency - we can do better, with the bigger star Y potentially having fewer edges.

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency - we can do better, with the bigger star Y potentially having fewer edges.

Recall:

For $f, g \in \mathbb{N}^{\mathbb{N}}$, write $f \leq^{*} g$ if for all but finitely many $n \in \mathbb{N}, f(n) \leq g(n)$. I'll write $f \leq g$ to mean that for all $n, f(n) \leq g(n)$.

The bounding number \mathfrak{b} is the least cardinality of a set of functions that is unbounded with respect to \leq^{*}, i.e. such that no one g is \geq^{*} them all, i.e.,

$$
\mathfrak{b}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}} \wedge \forall g \in \mathbb{N}^{\mathbb{N}} \exists f \in \mathcal{F} \neg\left(f \leq^{*} g\right)\right\}
$$

$\aleph_{1} \leq \mathfrak{b} \leq 2^{\aleph_{0}}$, and each inequality can be strict.

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Folklore based on Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ $(n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and \mathfrak{b} many edges $e_{Y, f}^{1}(f \in \mathcal{F})$ emanating from it where $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ is unbounded w.r.t. \leq^{*} (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathcal{F}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $[0,1 / g(n)) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be such that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.
Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

Example (Folklore based on Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathcal{F}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $[0,1 / g(n)) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$. Take $f \in \mathcal{F}$ such that $f \not^{*} g$.

Consider the edge $e_{Y, f}^{1}$ of Y :
Let $k \in \mathbb{N}$ be such that $\frac{1}{f(k)+1} \in e_{Y, f}^{1} \cap V$ and $f(k)>g(k)$.
Then $\left(\frac{1}{f(k)+1}, \frac{1}{f(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

Is this harder-working Dowker example optimal?

Is this harder-working Dowker example optimal?

Yes!

A complete characterisation

Theorem (B.-T.)
Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:
(1) X or Y is locally finite.
(2) One of X and Y is locally countable, and the other is locally less than \mathfrak{b}.

Proof

Proof \Rightarrow :

Proof

\Rightarrow : follows from the work of Tanaka (1982).

Proof

\Rightarrow : follows from the work of Tanaka (1982).
$\Leftarrow:$

Proof

\Rightarrow : follows from the work of Tanaka (1982).
\Leftarrow : locally finite case: Whitehead (1949).

Proof

\Rightarrow : follows from the work of Tanaka (1982).
\Leftarrow : locally finite case: Whitehead (1949).

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than \mathfrak{b}, then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than \mathfrak{b} many cells.

Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_{α}^{n} is compact. So
X has the weak topology \Leftrightarrow the topology is compactly generated
i.e. a set is closed if and only if its intersection with every compact set is closed.

Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_{α}^{n} is compact. So
X has the weak topology \Leftrightarrow the topology is compactly generated
i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the space $\omega+1$ (with the order topology).

Definition

A topological space Z is sequential if for every subset C of Z, C is closed if and only if C contains the limit of every convergent (countable) sequence from C C is sequentially closed.

Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_{α}^{n} is compact. So
X has the weak topology \Leftrightarrow the topology is compactly generated
i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the space $\omega+1$ (with the order topology).

Definition

A topological space Z is sequential if for every subset C of Z, C is closed if and only if C contains the limit of every convergent (countable) sequence from C C is sequentially closed.

Any sequential space is compactly generated. Since D^{n} is sequential for every n, we have that CW complexes are sequential.

Need to show: $X \times Y$ is sequential.

Need to show: $X \times Y$ is sequential.

So suppose

- $H \subset X \times Y$ is sequentially closed, and
- $\left(x_{0}, y_{0}\right) \in X \times Y \backslash H$.

We want to construct open neighbourhoods U of x_{0} in X and V of y_{0} in Y such that $(U \times V) \cap H=\emptyset$.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in D°.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in D°. This defines $U \cap X^{n}$.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in $\stackrel{\circ}{D}^{n}$. This defines $U \cap X^{n}$.
- Once $U \cap X^{k}$ is defined, for each $(k+1)$-cell e_{β}^{k+1} whose boundary intersects $U \cap X^{k}$, take a collar neighbourhood of $\left(\varphi_{\beta}^{k+1}\right)^{-1}\left(U \cap X^{k}\right) \subseteq S^{k}=\partial D^{k+1}$.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in D°. This defines $U \cap X^{n}$.
- Once $U \cap X^{k}$ is defined, for each $(k+1)$-cell e_{β}^{k+1} whose boundary intersects $U \cap X^{k}$, take a collar neighbourhood of $\left(\varphi_{\beta}^{k+1}\right)^{-1}\left(U \cap X^{k}\right) \subseteq S^{k}=\partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x ; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in D°. This defines $U \cap X^{n}$.
- Once $U \cap X^{k}$ is defined, for each $(k+1)$-cell e_{β}^{k+1} whose boundary intersects $U \cap X^{k}$, take a collar neighbourhood of $\left(\varphi_{\beta}^{k+1}\right)^{-1}\left(U \cap X^{k}\right) \subseteq S^{k}=\partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x ; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.

Lemma

Such open neighbourhoods form a base for the topology on X.

Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α}^{n} of an open ball in D°. This defines $U \cap X^{n}$.
- Once $U \cap X^{k}$ is defined, for each $(k+1)$-cell e_{β}^{k+1} whose boundary intersects $U \cap X^{k}$, take a collar neighbourhood of $\left(\varphi_{\beta}^{k+1}\right)^{-1}\left(U \cap X^{k}\right) \subseteq S^{k}=\partial D^{k+1}$.

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x ; f)$, taking radius/width $\frac{1}{f(\beta)+1}$ for the cell β step.

Lemma

Such open neighbourhoods form a base for the topology on X.
Wrinkle in proof.
Use compactness of closed cells.

Constructing neighbourhoods avoiding H

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)
Suppose

- W and Z are CW complexes,
- W^{\prime} is a finite subcomplex of W,
- Z^{\prime} is a finite subcomplex of Z,
- $U \subseteq W^{\prime}$ is open in W^{\prime},
- $V \subseteq Z^{\prime}$ is open in Z^{\prime}, and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.
Let e be a cell of Z whose boundary is contained in Z^{\prime}. Then there is a $p \in \mathbb{N}$ such that, if $V^{e, p}$ is V extended by the width $1 /(p+1)$ collar in e, then $U \times V^{e, p}$ has closure disjoint from H.

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W^{\prime} is a finite subcomplex of W,
- Z^{\prime} is a finite subcomplex of Z,
- $U \subseteq W^{\prime}$ is open in W^{\prime},
- $V \subseteq Z^{\prime}$ is open in Z^{\prime}, and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z^{\prime}. Then there is a $p \in \mathbb{N}$ such that, if $V^{e, p}$ is V extended by the width $1 /(p+1)$ collar in e, then $U \times V^{e, p}$ has closure disjoint from H.

Proof sketch.
Use compactness, normality and sequentiality of $W^{\prime} \times\left(Z^{\prime} \cup e\right)$.

Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_{0} in X and V of y_{0} in Y such that $(U \times V) \cap H=\emptyset$.

Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_{0} in X and V of y_{0} in Y such that $(U \times V) \cap H=\emptyset$.

We shall construct functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: J \rightarrow \mathbb{N}$, where J is the index set for cells of Y, such that $U\left(x_{0} ; f\right) \times U\left(y_{0} ; g\right)$ has closure disjoint from H.

Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_{0} in X and V of y_{0} in Y such that $(U \times V) \cap H=\emptyset$.

We shall construct functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: J \rightarrow \mathbb{N}$, where J is the index set for cells of Y, such that $U\left(x_{0} ; f\right) \times U\left(y_{0} ; g\right)$ has closure disjoint from H.

Basic idea

Simultaneous induction on cell number on the X side (after enumerating the cells of X in a reasonable order) and dimension on the Y side.

For each new cell e_{α} that you consider on the Y side, you get a function $f_{\alpha}: \mathbb{N} \rightarrow \mathbb{N}$ defining an open set on the X side avoiding H. Since there are fewer than \mathfrak{b} many α, they can be eventually dominated by a single function f, with respect to which the e_{α} part of the neighbourhood can be chosen.

Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_{0} in X and V of y_{0} in Y such that $(U \times V) \cap H=\emptyset$.

We shall construct functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: J \rightarrow \mathbb{N}$, where J is the index set for cells of Y, such that $U\left(x_{0} ; f\right) \times U\left(y_{0} ; g\right)$ has closure disjoint from H.

Basic idea

Simultaneous induction on cell number on the X side (after enumerating the cells of X in a reasonable order) and dimension on the Y side.

For each new cell e_{α} that you consider on the Y side, you get a function $f_{\alpha}: \mathbb{N} \rightarrow \mathbb{N}$ defining an open set on the X side avoiding H. Since there are fewer than \mathfrak{b} many α, they can be eventually dominated by a single function f, with respect to which the e_{α} part of the neighbourhood can be chosen.

This doesn't work ($f_{\alpha} \leq^{*} f$ isn't good enough).

\leq^{*} isn't good enough

If $f_{\alpha}(n) \leq f(n)$ for all n, then $U\left(x ; f_{\alpha}\right) \supseteq U(x ; f)$.

\leq^{*} isn't good enough

If $f_{\alpha}(n) \leq f(n)$ for all n, then $U\left(x ; f_{\alpha}\right) \supseteq U(x ; f)$.

If $f_{\alpha}(n) \leq^{*} f(n)$, then this fails on finitely many cells.

\leq^{*} isn't good enough

If $f_{\alpha}(n) \leq f(n)$ for all n, then $U\left(x ; f_{\alpha}\right) \supseteq U(x ; f)$.

If $f_{\alpha}(n) \leq^{*} f(n)$, then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.

\leq^{*} isn't good enough

If $f_{\alpha}(n) \leq f(n)$ for all n, then $U\left(x ; f_{\alpha}\right) \supseteq U(x ; f)$.

If $f_{\alpha}(n) \leq^{*} f(n)$, then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it's a problem.

\leq^{*} isn't good enough

If $f_{\alpha}(n) \leq f(n)$ for all n, then $U\left(x ; f_{\alpha}\right) \supseteq U(x ; f)$.

If $f_{\alpha}(n) \leq^{*} f(n)$, then this fails on finitely many cells.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it's a problem.

Solution

Hechler conditions!

Making it work

The construction is actually by recursion on dimension on the Y side, and simultaneously, constructing f as the limit of a descending sequence of Hechler conditions, that is:

- finite initial segments of f, and
- promises to dominate some function F thereafter.

Making it work

Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Making it work

Lemma 2 (Adding a Y-side cell, fitting X-side promises)
Let

- Y^{\prime} be a finite subcomplex of Y containing y_{0},
- $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function,
- $i \in \mathbb{N}$, and
- s be a function from the indices of Y^{\prime} to \mathbb{N} such that $U\left(x_{0} ; F\right) \times U\left(y_{0} ; s\right) \subseteq X \times Y^{\prime}$ has closure disjoint from H,
- $Y^{\prime \prime}=Y^{\prime} \cup e_{\alpha}$ for some cell e_{α} of Y not in Y^{\prime}.

Making it work

Lemma 2 (Adding a Y-side cell, fitting X-side promises)
Let

- Y^{\prime} be a finite subcomplex of Y containing y_{0},
- $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function,
- $i \in \mathbb{N}$, and
- s be a function from the indices of Y^{\prime} to \mathbb{N} such that $U\left(x_{0} ; F\right) \times U\left(y_{0} ; s\right) \subseteq X \times Y^{\prime}$ has closure disjoint from H,
- $Y^{\prime \prime}=Y^{\prime} \cup e_{\alpha}$ for some cell e_{α} of Y not in Y^{\prime}.

Then there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
(1) $f(n) \geq F(n)$ for all n in \mathbb{N}, and $f(n)=F(N)$ for all $n<i$,
(2) for every $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f^{\prime} \geq^{*} f$ and $f^{\prime} \geq F$, there is a $q \in \mathbb{N}$ such that $U\left(x_{0} ; f^{\prime}\right) \times U\left(y_{0} ; s \cup\{(\alpha, q)\}\right)$ has closure disjoint from H.

Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n, U\left(x_{0} ; r\right) \subset U\left(x_{0} ; F\right)$, so $U\left(x_{0} ; r\right) \times U\left(y_{0} ; s\right)$ certainly has closure disjoint from H.

Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n, U\left(x_{0} ; r\right) \subset U\left(x_{0} ; F\right)$, so $U\left(x_{0} ; r\right) \times U\left(y_{0} ; s\right)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_{r} \in \mathbb{N}$ such that $U\left(x_{0} ; r\right) \times U\left(y_{0} ; s \cup\left\{\left(\alpha, q_{r}\right)\right\}\right)$ has closure disjoint from H.

Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n, U\left(x_{0} ; r\right) \subset U\left(x_{0} ; F\right)$, so $U\left(x_{0} ; r\right) \times U\left(y_{0} ; s\right)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_{r} \in \mathbb{N}$ such that $U\left(x_{0} ; r\right) \times U\left(y_{0} ; s \cup\left\{\left(\alpha, q_{r}\right)\right\}\right)$ has closure disjoint from H.

Then by Lemma 1 again, there is $p \in \mathbb{N}$ sucht that $U\left(x_{0} ; r \cup\{(n, p)\}\right) \times U\left(y_{0} ; s \cup\left\{\left(\alpha, q_{r}\right)\right\}\right)$ has closure disjoint from H.

Now, assuming by induction we have defined $f \upharpoonright n(n \geq i)$, there are only finitely many r with $F \upharpoonright n \leq r \leq f \upharpoonright n$; follow this procedure for all of them, and take the maximum of the resulting values p to be $f(n)$.

Then for any $f^{\prime} \geq F$ with $f^{\prime} \geq^{*} f, f^{\prime} \geq r \cup(f \upharpoonright[n, \infty))$ for some $n \geq i$ and some r of length n as above, so

$$
U\left(x_{0} ; f^{\prime} \upharpoonright n+1\right) \times U\left(y_{0} ; s \cup\left\{\left(\alpha, q_{r}\right)\right\}\right) \text { has closure disjoint from } H,
$$

and in fact

$$
U\left(x_{0} ; f^{\prime}\right) \times U\left(y_{0} ; s \cup\left\{\left(\alpha, q_{r}\right)\right\}\right) \text { has closure disjoint from } H .
$$

Finishing the proof of the Theorem

With Lemma 2 in hand, the argument now follows as outlined before:

Proceed by induction of dimension on the Y side. Assume we have defined $f_{k}: \mathbb{N} \rightarrow \mathbb{N}$ and $g \upharpoonright Y^{k}$. For each $(k+1)$-dimensional cell e_{α} on the Y side, use Lemma 2 with f_{k} as F, k as i, the minimal (finite) subcomplex of Y containing e_{α} as $Y^{\prime \prime}$, and $g \upharpoonright\left(Y^{\prime \prime} \backslash e_{\alpha}\right)$ as s to get $f_{a l, k+1}$. There are fewer than \mathfrak{b} many such $f_{\alpha, k+1}$, so take f_{k+1} eventually dominating all of them. Then take q as given by Lemma 2 (with f_{k+1} as f^{\prime}) as $g(\alpha)$.

Finally, take f to be the (componentwise) limit of the f_{k+1}; these f and g are such that $U\left(x_{0} ; f\right) \times U\left(y_{0} ; g\right)$ has closure disjoint from H.

