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CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of
higher and higher dimension.

For n ∈ N, let

Dn denote the closed ball of radius 1 about the origin in Rn (the n-disc),
◦
Dn its interior (the open ball of radius 1 about the origin), and

Sn−1 its boundary (the n − 1-sphere).
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of continuous functions
ϕn
α : Dn → X (characteristic maps), for α in an arbitrary index set and n ∈ N a

function of α, such that:

1 ϕn
α �

◦
Dn is a homeomorphism to its image, and X is the disjoint union as α

varies of these homeomorphic images ϕn
α[
◦
Dn] (“cells”).

2 Closure-finiteness: For each ϕn
α, ϕn

α[Sn−1] is contained in finitely many cells
all of dimension less than n.

3 Weak topology: A set is closed if and only if its intersection with each closed
cell ϕn

α[Dn] is closed.

We often denote ϕn
α[
◦
Dn] by enα.
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Not necessarily metrizable

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).

X is not metrizable, as x0 does not have a countable neighbourhood base.

Proof
Identify each edge with the unit interval, with x0 at 0. Then for every f : N→ N,
consider the open neighbourhood U(x0; f ) of x0 whose intersection with e1X ,n is
the interval [ 0, 1/(f (n) + 1) ).

These form a neighbourhood base, but for any countably many fi , there is a g
that eventually dominates each of them, so U(x0; g) does not contain any of the
U(x0; fi ).
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Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y , with the product
topology, need not be a CW complex.

Since Dm × Dn ∼= Dm+n, there is a natural cell structure on X × Y , which
satisfies closure-finiteness, but the product topology is generally not as fine as the
weak topology.

Convention
In this talk, X × Y is always taken to have the product topology, so “X × Y is a
CW complex” means “the product topology on X × Y is the same as the weak
topology”.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex y0 and 2ℵ0 many edges e1Y ,f (f ∈ NN)
emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for
every n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.

E.g.

For any CW complex X and n ∈ N, the n-skeleton X n of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X .
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition
Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x
in X there is a subcomplex A of X with fewer than κ many cells such that x is in
the interior of A. We write locally finite for locally less than ℵ0, and locally
countable for locally less than ℵ1.
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Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ
if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

⇐ is trivial. For ⇒, given any point w , recursively fill out to get an open (hence
clopen) subcomplex containing w with fewer than κ many cells, using the fact
that the cells are compact to control the number of cells along the way.
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What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then X × Y is a CW complex.

Footnote: “I do not know if this restriction on [X or Y ] is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then X × Y is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then X × Y is not a CW complex.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, X × Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming b = ℵ1, X × Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable.
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Can we do better?

Question
Can we show, without assuming any extra set-theoretic axioms, that the product
X × Y of CW complexes X and Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable?

Answer (follows from Tanaka’s work)

No.
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Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)

Yes!
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Pushing Dowker’s example harder

In the argument for Dowker’s example, there was a lot of inefficiency — we can
do better, with the bigger star Y potentially having fewer edges.

Recall:

For f , g ∈ NN, write f ≤∗ g if for all but finitely many n ∈ N, f (n) ≤ g(n).
I’ll write f ≤ g to mean that for all n, f (n) ≤ g(n).

The bounding number b is the least cardinality of a set of functions that is
unbounded with respect to ≤∗, i.e. such that no one g is ≥∗ them all, i.e.,

b = min{|F| : F ⊆ NN ∧ ∀g ∈ NN∃f ∈ F¬(f ≤∗ g)}.

ℵ1 ≤ b ≤ 2ℵ0 , and each inequality can be strict.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).
Let Y be the “star” with a central vertex y0 and 2ℵ0 many edges e1Y ,f (f ∈ NN)
emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for
every n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ F

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for

every n ∈ N. Take f ∈ F such that f �∗ g .

Consider the edge e1Y ,f of Y :

Let k ∈ N be such that 1
f (k)+1 ∈ e1Y ,f ∩ V and f (k) > g(k).

Then
(

1
f (k)+1 ,

1
f (k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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Is this harder-working Dowker example optimal?

Yes!
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A complete characterisation

Theorem (B.-T.)

Let X and Y be CW complexes. Then X × Y is a CW complex if and only if one
of the following holds:

1 X or Y is locally finite.

2 One of X and Y is locally countable, and the other is locally less than b.
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Proof

⇒: follows from the work of Tanaka (1982).

⇐: locally finite case: Whitehead (1949).

So it remains to show that if X and Y are CW complexes such that X is locally
countable and Y is locally less than b, then X × Y is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and
Y has fewer than b many cells.
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Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell ēnα is compact. So

X has the weak topology ⇔ the topology is compactly generated

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the
space ω + 1 (with the order topology).

Definition
A topological space Z is sequential if for every subset C of Z , C is closed if and
only if C contains the limit of every convergent (countable) sequence from C —
C is sequentially closed.

Any sequential space is compactly generated. Since Dn is sequential for every n,
we have that CW complexes are sequential.
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Need to show: X × Y is sequential.

So suppose

H ⊂ X × Y is sequentially closed, and

(x0, y0) ∈ X × Y \ H.

We want to construct open neighbourhoods U of x0 in X and V of y0 in Y such
that (U × V ) ∩ H = ∅.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 23 / 32



Need to show: X × Y is sequential.

So suppose

H ⊂ X × Y is sequentially closed, and

(x0, y0) ∈ X × Y \ H.

We want to construct open neighbourhoods U of x0 in X and V of y0 in Y such
that (U × V ) ∩ H = ∅.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 23 / 32



Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by
induction on dimension:

If x ∈ enα ⊂ X , start with the image under ϕn
α of an open ball in

◦
Dn. This

defines U ∩ X n.

Once U ∩ X k is defined, for each (k + 1)-cell ek+1
β whose boundary intersects

U ∩ X k , take a collar neighbourhood of (ϕk+1
β )−1(U ∩ X k) ⊆ Sk = ∂Dk+1.

For any function f from the set of indices of cells in X to N we thus get an open
neighbourhood U(x ; f ), taking radius/width 1

f (β)+1 for the cell β step.

Lemma
Such open neighbourhoods form a base for the topology on X .

Wrinkle in proof.

Use compactness of closed cells.
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Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

W and Z are CW complexes,

W ′ is a finite subcomplex of W ,

Z ′ is a finite subcomplex of Z ,

U ⊆W ′ is open in W ′,

V ⊆ Z ′ is open in Z ′, and

H is a sequentially closed subset of W × Z such that the closure of U × V is
disjoint from H.

Let e be a cell of Z whose boundary is contained in Z ′. Then there is a p ∈ N
such that, if V e,p is V extended by the width 1/(p + 1) collar in e, then U × V e,p

has closure disjoint from H.

Proof sketch.

Use compactness, normality and sequentiality of W ′ × (Z ′ ∪ e).

Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 32



Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

W and Z are CW complexes,

W ′ is a finite subcomplex of W ,

Z ′ is a finite subcomplex of Z ,

U ⊆W ′ is open in W ′,

V ⊆ Z ′ is open in Z ′, and

H is a sequentially closed subset of W × Z such that the closure of U × V is
disjoint from H.

Let e be a cell of Z whose boundary is contained in Z ′. Then there is a p ∈ N
such that, if V e,p is V extended by the width 1/(p + 1) collar in e, then U × V e,p

has closure disjoint from H.

Proof sketch.

Use compactness, normality and sequentiality of W ′ × (Z ′ ∪ e).

Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 32



Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

W and Z are CW complexes,

W ′ is a finite subcomplex of W ,

Z ′ is a finite subcomplex of Z ,

U ⊆W ′ is open in W ′,

V ⊆ Z ′ is open in Z ′, and

H is a sequentially closed subset of W × Z such that the closure of U × V is
disjoint from H.

Let e be a cell of Z whose boundary is contained in Z ′. Then there is a p ∈ N
such that, if V e,p is V extended by the width 1/(p + 1) collar in e, then U × V e,p

has closure disjoint from H.

Proof sketch.

Use compactness, normality and sequentiality of W ′ × (Z ′ ∪ e).

Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 32



Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

W and Z are CW complexes,

W ′ is a finite subcomplex of W ,

Z ′ is a finite subcomplex of Z ,

U ⊆W ′ is open in W ′,

V ⊆ Z ′ is open in Z ′, and

H is a sequentially closed subset of W × Z such that the closure of U × V is
disjoint from H.

Let e be a cell of Z whose boundary is contained in Z ′. Then there is a p ∈ N
such that, if V e,p is V extended by the width 1/(p + 1) collar in e, then U × V e,p

has closure disjoint from H.

Proof sketch.

Use compactness, normality and sequentiality of W ′ × (Z ′ ∪ e).
Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 32



Back to the proof of the Theorem

We want to construct open neighbourhoods U of x0 in X and V of y0 in Y such
that (U × V ) ∩ H = ∅.

We shall construct functions f : N→ N and g : J → N, where J is the index set
for cells of Y , such that U(x0; f )× U(y0; g) has closure disjoint from H.

Basic idea

Simultaneous induction on cell number on the X side (after enumerating the cells
of X in a reasonable order) and dimension on the Y side.

For each new cell eα that you consider on the Y side, you get a function
fα : N→ N defining an open set on the X side avoiding H. Since there are fewer
than b many α, they can be eventually dominated by a single function f , with
respect to which the eα part of the neighbourhood can be chosen.

This doesn’t work (fα ≤∗ f isn’t good enough).
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≤∗ isn’t good enough

If fα(n) ≤ f (n) for all n, then U(x ; fα) ⊇ U(x ; f ).

If fα(n) ≤∗ f (n), then this fails on finitely many cells.

For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.

For arbitrary CW complexes, where higher dimensional cells can glue on to
those finitely many cells, it’s a problem.

Solution
Hechler conditions!
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Making it work

The construction is actually by recursion on dimension on the Y side, and
simultaneously, constructing f as the limit of a descending sequence of Hechler
conditions, that is:

finite initial segments of f , and

promises to dominate some function F thereafter.
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Making it work

Lemma 2 (Adding a Y -side cell, fitting X -side promises)

Let

Y ′ be a finite subcomplex of Y containing y0,

F : N→ N be a function,

i ∈ N, and

s be a function from the indices of Y ′ to N such that
U(x0;F )× U(y0; s) ⊆ X × Y ′ has closure disjoint from H,

Y ′′ = Y ′ ∪ eα for some cell eα of Y not in Y ′.

Then there is a function f : N→ N such that

1 f (n) ≥ F (n) for all n in N, and f (n) = F (N) for all n < i ,

2 for every f ′ : N→ N such that f ′ ≥∗ f and f ′ ≥ F , there is a q ∈ N such
that U(x0; f ′)× U(y0; s ∪ {(α, q)}) has closure disjoint from H.
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Proof of Lemma 2

For every finite tuple r of length n such that r ≥ F �n, U(x0; r) ⊂ U(x0;F ), so
U(x0; r)× U(y0; s) certainly has closure disjoint from H.

By Lemma 1, we can then take qr ∈ N such that U(x0; r)× U(y0; s ∪ {(α, qr )})
has closure disjoint from H.

Then by Lemma 1 again, there is p ∈ N sucht that
U(x0; r ∪ {(n, p)})× U(y0; s ∪ {(α, qr )}) has closure disjoint from H.
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Now, assuming by induction we have defined f �n (n ≥ i), there are only finitely
many r with F �n ≤ r ≤ f �n; follow this procedure for all of them, and take the
maximum of the resulting values p to be f (n).

Then for any f ′ ≥ F with f ′ ≥∗ f , f ′ ≥ r ∪ (f � [n,∞)) for some n ≥ i and some r
of length n as above, so

U(x0; f ′ �n + 1)× U(y0; s ∪ {(α, qr )}) has closure disjoint from H,

and in fact

U(x0; f ′)× U(y0; s ∪ {(α, qr )}) has closure disjoint from H.

Lemma 2
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Finishing the proof of the Theorem

With Lemma 2 in hand, the argument now follows as outlined before:

Proceed by induction of dimension on the Y side. Assume we have defined
fk : N→ N and g �Y k . For each (k + 1)-dimensional cell eα on the Y side, use
Lemma 2 with fk as F , k as i , the minimal (finite) subcomplex of Y containing eα
as Y ′′, and g �(Y ′′ r eα) as s to get fal,k+1. There are fewer than b many such
fα,k+1, so take fk+1 eventually dominating all of them. Then take q as given by
Lemma 2 (with fk+1 as f ′) as g(α).

Finally, take f to be the (componentwise) limit of the fk+1; these f and g are
such that U(x0; f )× U(y0; g) has closure disjoint from H.
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